
 

 

 

 

 

 

 

 

P-values and hypothesis tests are ubiquitous in clinical research, but what do they really tell us about our data, and are 
they sufficient to guide informed decisions on treatment effect? 

In the second of Phastar’s Biotech Essential Statistics webinars, Professor Jennifer Visser-Rogers, Vice President of 
Statistical Research and Consultancy, explained the basis of p values, hypothesis tests, and statistical significance, 
before looking at their potential pitfalls and dispelling some common fallacies.

 

P-values: A potted history  

R.A. Fisher first popularized the concept of a p-value in his 
1926 book, Statistical Methods for Research Workers. It 
is a method of measuring the strength of evidence 
against a null hypothesis, and is the probability, under 
the assumption of no effect, of obtaining a result equal 
to or more extreme than what was actually observed. In 
essence, it enables analysts to untangle whether an 
observed effect has occurred by chance. A low p-value is 
accepted as evidence against the null hypothesis. 

Later on, Neyman and Pearson proposed the idea of 
hypothesis tests, to provide a mechanism for making 
quantitative decisions and remove some of the 
subjectivity associated with Fisher’s original idea. Making 
quantitative decisions introduces the notion of making 
the “wrong” decision and Neyman and Pearson argued 
that there were two types of errors that could be made in 
interpreting the results of an experiment. A type I error, or 
a false positive, occurs when a researcher rejects a true 
null hypothesis that is true in the population, and a type II 
error, or false negative, is failing to reject the null 
hypothesis when it should have been rejected. Under this 
updated framework, and with false positive results 
generally being seen as more dangerous to patients, a 
type I error rate (α) is set as a significance level to guide 
decision-making.  

A p-value of <0.05 has been generally accepted as a 
convenient cut-off point for statistical significance. It 
means that there was a less than 5% chance the results 
obtained occurred under the null hypothesis of no effect, 
and a 95% chance they occurred because the alternative 
hypothesis was true
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Magic number limitations  

There are, however, a number of limitations to this 
approach, not least the arbitrary nature of the commonly 
used threshold.  

While there is stronger evidence against the null 
hypothesis as the p-value becomes smaller, an α = 0.05 is 
just a convention that evolved from Fisher’s and Neyman 
and Pearson’s work and has no objective basis. Results 
that fall just a few decimal points on either side of the cut 
off, for example, are broadly similar, yet can be interpreted 
as vastly different, with 0.46 being statistically significant 
and 0.52 not being statistically significant.  

The use of 0.05 as a “magic number” that provides a 
“passport to publication” can also result in researchers’ 
cherry-picking promising findings, also known as data 
dredging, or p-hacking, and leads to publication bias as a 
result of scientific journals’ reluctance to publish negative 
results.  

Many other fallacies exist, and it’s important to be aware 
of them when analyzing and interpreting results.   

Firstly, p-values do not measure the strength of evidence 
against the null, not the probability that the null is true. 
There is a reason why researchers use the terminology 
“reject” or “fail to reject” the null hypothesis. Rejecting the 
null hypothesis says that the results were not compatible 
with the null. Failing to reject the null doesn’t mean that we 
“accept” the null as true. Rather, it simply means there is 
insufficient evidence in this study to reject it, but it doesn’t 
commit us. There are numerous reasons why a trial could 
fail to reject a null hypothesis; it could be under-powered, 
for example. What’s more, while it is true that effect size 
does influence the p-value, and larger effect sizes have 
smaller p-values, p-values do not, in themselves, tell us 
anything about the effect size. They are also influenced, 
for example, by sample size and measurement precision. 
With a big enough sample size, even the tiniest of 
differences could be statistically significant. 

Clinical relevance 

It is also crucially important to recognize that statistical 
significance does not imply clinical importance, or the 
impact on clinical practice. Large studies, for instance, 
can detect clinically unimportant, yet statistically 
significant findings, and vice versa.  

This adds to the complexity of setting sample sizes, as 
well as the interpretation of results. To ascertain clinical 
importance, analysis needs to include an evaluation of 
benefit and risk. Whilst not without their own complexities, 
measures such as the number needed to treat (NNT) and 

the number needed to harm (NNH) can be useful tools 
here. 

NNT is defined as the inverse of absolute risk reduction 
and enables statisticians to calculate the number of 
patients clinicians would need to treat in order to meet a 
particular endpoint. In a heart failure trial, for example, that 
endpoint may be first hospitalization or cardiovascular 
death. Similar calculations inform the NNH, which can be 
used to assess safety. 

 

Protect the data  

Summing up, Prof Visser-Rogers said there was a lot more to consider than just p-values and hypothesis tests when 
building, conducting, and interpreting clinical trials. 

 

 

 

 

 

Learn more. Watch the full webinar here 

 

Continuous data is seen as the gold standard of data collection and we do all that we can to collect the 

data in the best possible way,” she said. “After all of this work… why would we then boil down our analyses 

and make our final decisions on the basis of a completely arbitrary pair of dichotomous categories? 


